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Abstract. This paper describes a framework for analyzing video se-

quences of a driver and determining his level of attention. The proposed

system deals with the computation of eyelid movement parameters and

head (face) orientation estimation. The system relies on pupil detection

to robustly track the driver’s head pose and monitoring its level of fa-

tigue. Visual information is acquired using a specially designed solution

combining a CCD video camera with an NIR illumination system. The

system is fully automatic and classifies rotation in all-view direction,

detects eye blinking and eye closure and recovers the gaze of the eyes.

Experimental results using real images demonstrates the accuracy and

robustness of the proposed solution.

1 Introduction

The ever-increasing number of traffic accidents in the EC due to the diminished driver’s
vigilance level has became a serious problem to society. Driver fatigue resulting from
sleep deprivation or sleep disorders is an important factor in the increasing number of
accidents on today’s roads. Statistics shows that a leading cause for fatal or injury-
causing traffic accidents is due to drivers with a diminished vigilance level. Automati-
cally detecting the visual attention level of drivers early enough to warm them about
their lack of adequate visual attention due to fatigue may save a significant amount of
lives and personal suffering. Therefore, it is important to explore the use of innovative
technologies for solving the driver visual attention monitoring problem.

Many efforts have been reported in the literature on developing non-intrusive real-
time image-based fatigue monitoring systems [2, 7–9, 11]. Measuring fatigue in the
workplace is a complex process. There are four kinds of measures that are typically
used in measuring fatigue: physiological, behavioral, subjective self-report and perfor-
mance measures [15]. An important physiological measure that has been studied to
detect fatigue has been eye-movements. Several eye-movements were used to measure
fatigue like blink rate, blink duration, long closure rate, blink amplitude, saccade rate
and peak saccade velocity. An increasing popular method of detecting the presence of
fatigue is the use of a measure called PERCLOS [15]. This measure attempts to detect
the percentage of eye-lid closure as a measure of real time fatigue.The present solution
focuses on rotation of the head and eye blinking, two important cues for determining
driver visual attention, to gather statistics about the driver’s visual attention level.

The organization of the paper is as follows. In section 2, the image acquisition
system and illuminator is presented. The pupil detection solution based on the Purkinje
images is presented on section 3. This entails pupil detection, tracking and eye gaze
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estimation. In section 4, the automated driver visual attention statistics and some
results are given and in section 5 the details of the 3D head orientation and results are
presented. Finally, conclusions are presented in section 6.

2 Image acquisition system and illuminator

To take advantage of the Purkinje images, a special camera-illuminator device was
constructed. For that purpose, several NIR light emitting diodes (the TSHA650 from
Vishay Telefunken) were distributed evenly and symmetrically along the circumference
of two coplanar concentric rings [8] (see fig. 1). The center of the rings coincides with
the camera optical axis. The IR light source illuminates the driver’s eye and generates
two kinds of pupil images: bright and dark pupil images. The bright pupil image is
produced when the inner ring of IR leds is on and the dark pupil image when the
outer ring is on. In order to take dark and bright pupil images simultaneously, the
inner and outer ring control make use of the even/odd video signal information. The
first Purkinje image, the so-called glint, is observed in both pupil images. A narrow
band NIR filter (700-900 nm) was placed in front of the optical system of the camera
to minimize interference from light sources beyond IR light and to maintain uniform
illumination under different light conditions.

3 Pupil detection, tracking and gaze estimation

A robust and accurate pupil detection is crucial for the subsequent eyelid movements
monitoring, eye gaze determination and face orientation estimation. Pupil detection is
obtained by IR illumination after removing external illumination disturbance, and the
result will be used on pupil tracking via Kalman filtering.

3.1 Pupil and glint detection

At the NIR wavelength, pupils reflect almost all the IR light they receive along the
path back to the camera, producing the bright pupil effect. If illuminated off the camera
optical axis, the pupils appear dark since the reflected light will not enter the camera
lens. This produces the so-called dark pupil effects.

Pupil detection involves locating pupils in the image. The narrow band NIR filter
that was attached to the camera lens almost remove the ambient light interference. To
robustly detect the pupils, each frame is separated into two image fields, representing
the bright and dark pupil images separately (fig. 2). The image subtraction of these
two image fields will produce an image with an high intensity contrast between the

Fig. 1. Image Acquisition and NIR Illuminator .
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Fig. 2. The bright and dark pupil effect.

pupils and the rest of the image, allowing easy pupil segmentation via a simple global
thresholding. This yields a binary image consisting of binary blobs that may represent
the pupils. The pupils are detected by searching the entire image to locate two blobs
that satisfy certain size, shape and distance constraints. The relationship between the
shape and size of the pupils and the distance between each other is defined based on
the anthropometric measures of the human face. After the correct detection of both
pupils, an ellipse fitting is applied to each pupil and the centroid of the resulting ellipse
is returned as the position of the detected pupil.

To take advantage of the high contrast between the glint and the rest of the image,
the glint is detected using the dark image field. The bimodal intensity distribution of the
dark image field allows a robust detection of the glint via simple image thresholding in
the neighborhood region of the pupils. Once again, the shape and position distribution
of the glints are used to constrain the segmentation results. Since the glints are visible
in both image fields, the glints detected in the dark image field are cross-checked with
the results obtained with the bright image field. The centroid of the segmented blob of
a glint is returned as the image position of the glint.

3.2 Pupil tracking

To continuously monitor the driver visual attention, it is important to track the eyes in
real-time. We implemented a Kalman filter tracker to accomplish this task. This tracker
is aimed to fulfill two purposes: estimate the position and uncertainty of moving targets
in the next frame and to filter out noise input data.

The target state vector is X = [pl pr gl gr ṗl ṗr ġl ġr]
T where pi = (xi, yi)|i=pr,pl

and ṗi = (ẋi, ẏi)|i=pr,pl are the image position and image velocity of the pupils and
gi = (xi, yi)|i=gr,gl and ġi = (ẋi, ẏi)|i=gr,gl are the image position and image velocity
of the glints.

The system model used is the following discrete model:

Xk = f (Xk−1, k − 1) + Wk Zk = h (Xk, k) + Vk (1)

where Wk is a discrete-time white noise process with mean zero and covariance matrix
Q, Vk is a discrete-time white noise process with mean zero and covariance matrix R,
and Wj , Vk, and X0 are uncorrelated for all j and k. We considered the assumption
that trajectories are locally linear in 2D, resulting for the system model the following
linear difference equation Xk = A ·Xk−1 +Wk where the system evolution matrix, Ak,
is based on first order Newtonian dynamics and assumed time invariant.

The measurement vector is Zk = [pl pr gl gr]
T and is related to the state vector

via the measurement equation Zk = C ·Xk + Vk.
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Fig. 3. PERCLOS (left) and AECS (right) measurements over a period of 80 seconds.

The state covariance matrix Pk encodes the information of the ellipse of uncertainty
of the estimation and can be used to compute the search area for the pupils and the
glints. Specifically, the search area size was chosen as [H, W ] = [20+0.2 ·Pk(y, y), 25+
0.3 · Pk(x, x)].

3.3 Head-Eye gaze estimation

As stated before, the first and the fourth images of Purkinje (dual-images of Purkinje)
supply a very reliable information for head-eye gaze estimation [3, 10]. When the head-
eye is panned horizontally or vertically, the relative positioning of the glint and the
centre of the bright-eye change accordingly, and the direction of gaze can be calculated
from these relative positions.

For a roll free head rotation, the locations of the pupils will share a common image
line. In case of a pure roll head rotation (frontal orientation), the orientation of the
line defined by both pupils gives an estimation of the roll angle of the head and the
relative positioning of the glint and the pupil is the same in each one of the eyes. In
the case of a head-eye yaw rotation, this relative positioning is different for each one
of the eyes, being equal for the case of a pitch head-eye rotation. This observation is
used to obtain a rough estimation of the direction of gaze.

Assuming roll free head rotation, the dual-images of Purkinje supply the following
measures

Dyaw = (|xpr − xgr |)− (|xpl − xgl |) Dpitch = 0.5 ∗ ((ypr − ygr ) + (ypl − ygl)) (2)

that are used to estimate the head-eye gaze orientation. Dyaw is null for a frontal head
pose and shows positive/negative values for right/left head rotations. The eye gaze
orientation is measured on the eye with less pupil-glint relative position. Using these
measures, the head-eye gaze orientation is obtained via a linear mapping procedure. To
make these measures scale invariant, they are normalized by dividing over the inter-
pupil distance value of the front view. An off-line calibration procedure was carried on,
quantizing the head gaze orientation in steps of 5o.

4 Automated driver visual attention statistics

Of the drowsiness-detection measures, the measure referred to as PERCLOS was found
to be the most reliable and valid determination of a drivers alertness level. PERCLOS is
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the percentage of eyelid closure of the pupil over time and reflects slow eyelid closures
(droops) rather than blinks. To measure eyelid closure of the pupil, the size of the
pupil was taken as the average size of both pupils and the rate of closure is defined as
rateclosure = 1− (pupilsize)/max(pupilsize), defining a closed eye if rateclosure ≥ 0.8.

AECS is the average eye closure speed [9], which means the amount of time needed
to fully close the eyes and to fully open the eyes. An individual eye closure speed is
defined as the time period during which the 0.2 ≤ rateclossure ≤ 0.8. Figure 3 show
the PERCLOS and AECS for a period of 80 seconds.

5 Driver head orientation

The presented approach models the shape of the driver’s face with an ellipse, since
human faces can be accurately modelled with an ellipse and is less sensitive to facial
expression changes. To recover the 3D face pose from a single image, it is assumed
that the ratio of the major and minor axes of the 3D face ellipse is know. This ratio
is obtained through the anthropometric face statistics. Our purpose is to recover the
three angles of rotation: yaw (around vertical axis), pitch (around horizontal axis) and
roll (around the optical axis).

5.1 Image face ellipse detection and tracking

The image face ellipse detection and tracking is based on three major steps: i) obtain
an approximate location of the face based on the positions of the eyes. Since the pupil
position varies as a function of the eye gaze movements, the approximate location of
the face is based on the location of the glints which are invariants to the eye gaze. ii)
determine the best fitted ellipse for the image face by maximizing the normalized sum
of the gradients around the edges of the face. iii) Ellipse face tracking using a Kalman
filter.

In order to correctly detect the face ellipse, some constraints must be considered,
in special size, location and orientation. The distance between the detected glints and
their location are used to constrain the size and location of the image face ellipse. The
orientation of the line that passes through both glints is directly related to the 3D face
roll rotation. For roll free face poses this line remains horizontal, which means that it
is invariant to the yaw and pitch rotations. Under this constraints, the roll angle (ψ)
is defined by ψ = atan[(ypl − ypr )/(xpl − xpr )].

Under frontal orientation, a weak perspective projection can be assumed and the
face symmetry for the location of the eyes within the 3D face ellipse hold for the
image face ellipse. This means that the major axis of the face ellipse is normal to the
line connecting the two glints and pass through the center of the line. In fact, these
constraints doesn’t hold for non-frontal orientation and the orientation of the major line
is not normal to the connecting line. Although, the solution adopted kept the constrain
that the major axis of the ellipse pass through the center of the line, considering the
existence of an angle α between the major axis and the normal to the line that connect
the two glints.

Assuming the existence of an ellipse coordinate frame located at the middle point of
the glints connecting line, with the X and Y axis aligned with the minor and major axes
of the ellipse, respectively, the image face ellipse is characterized by four parameters
(mi, ni, d, α), where mi and ni are the lengths of the major and minor semi-axis of the
ellipse, respectively, d is the distance to the image ellipse center and α is the rotation
angle.
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Fig. 4. Image face ellipse detection.

Taking the approach proposed by Birchfield [4], the image face ellipse can be de-
tected as the one that minimizes the normalized sum of the gradient magnitude pro-
jected along the directions orthogonal to the ellipse around the perimeter of the ellipse.
This can be formulated has ε = 1

N

∑N

i=1
|n(i) · g(i)|2 where n(i) is the unit vector nor-

mal to the ellipse at pixel i, g(i) is the pixel intensity gradient and (·) denotes dot
product. The best face ellipse is χ = arg maxe∈E(ε2) where the search space E is
the set of possible ellipses produced by varying the four parameters of the ellipse. In
order to constraint the searching space, the rough estimation of the 3D face orientation
obtained via the dual-images of Purkinje is used to define an initial estimate for these
parameters. The four ellipse parameters are tracked via a kalman filter. Figure 4 show
the result of the image face ellipse detection.

5.2 Face orientation

Consider an object coordinate frame attached to the 3D face ellipse, with its origin
located on the center of the ellipse and its X and Y axes aligned with the major and
minor axes of the ellipse. The Z axis is located normal to the 3D ellipse plane. The
camera coordinate frame is located at the camera optical center with the Xc and Yc

aligned with the image directions with the Zc along the optical axis. Since the 3D face
ellipse is located on the plane Z = 0, the projection equation that characterizes the
relationship between an image face ellipse point pi = (x, y, 1)T and the corresponding
3D face ellipse point Pi = (X, Y, 1)T is given by pi = βK[R|t]Pi where K represents the
camera intrinsic parameters matrix, M = [R|t] = [r1 r2|t] is the extrinsic parameters
matrix and β = λ/f is an unknown scalar.

Representing

[
x y 1

]



a c/2 d/2

c/2 b e/2

d/2 e/2 f







x

y

1


 = 0 (3)

the matricial generic formula of an ellipse, the 3D face ellipse and the image face ellipse
can be defined, respectively, as

[
X Y 1

]
Q

[
X Y 1

]T
= 0

[
x y 1

]
A

[
x y 1

]T
= 0. (4)

Substituting pi = βKMPi to Eq. 4 lead to

[
X Y 1

]
βMT KT AKM

[
X Y 1

]T
= 0. (5)

Denoting B = KT AK, the 3D ellipse matrix Q yields Q = βMT BM .
Let the length of the major and minor axis of the 3D face ellipse be m and n,

respectively, and since the object frame is located on the center of the ellipse, the
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Fig. 5. Head face orientation estimation.

ellipse matrix Q is parameterized as

Q =




1/m2 0 0

0 1/n2 0

0 0 −1


 (6)

resulting the equation




1/m2 0 0

0 1/n2 0

0 0 −1


 = β




rT
1 Br1 rT

1 Br2 rT
1 Bt

rT
2 Br1 rT

2 Br2 rT
2 Bt

tT Br1 tT Br2 tT Bt


 (7)

Due to the symmetry of the matrix, there are only six equations (constraints) for
a total of nine unknowns.

Since the roll angle was already obtained, the face orientation can be defined just
by the yaw and pitch rotation. Assuming a null translation vector, the rotation matrix
obtained from the yaw and pitch rotation is

R = RσRυ =
[
r1 r2 r3

]
=




cos(σ) sin(σ)sin(υ) −sin(σ)cos(υ)

0 cos(υ) sin(υ)

sin(σ) −cos(σ)sin(υ) cos(σ)cos(υ)


 . (8)

Assuming that the ratio between the major and minor axis if the 3D face ellipse is
know by anthropometric face analysis, and letting c = m2/n2 represent this ratio, the
2× 2 sub-matrix yields

β

[
rT
1 Br1 rT

1 Br2

rT
2 Br1 rT

2 Br2

]
=

[
1/m2 0

0 1/n2

]
(9)

resulting the following constraint equations

rT
1 Br2 = 0 (10)

βrT
1 Br1

1/m2
=

βrT
2 Br2

1/22
⇔ rT

1 Br1 =
n2

m2
rT
2 Br2 ⇔ rT

2 Br2 − crT
1 Br1 = 0. (11)

Using these two equations it is possible to solve for the pitch and yaw iteratively.
The initial estimates of 0o for both angles has been used with correct convergence re-
sults. This approach was tested with several real images with good results. Although,
the accuracy obtained with this approach is highly dependent on the image face el-
lipse obtained. Figure 5 show the results obtained with the face orientation estimation
approach.
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6 Conclusions

A Real-time Driver Visual Attention Monitoring System was presented. A special hard-
ware image acquisition and illuminator system was described to take advantage of the
dual-images of Purkinje. A efficient and simple solution for pupil detection was pre-
sented that were used to take some drossiness measure in real-time. A rough estimation
of the head-eye gaze was described based on the dual-images of Purkinje and finally
an ellipse based face orientation estimation was presented. Although the good results
obtained with the face orientation estimation, it reveals to be highly dependent on
the image face ellipse detection. Further research is necessary in order to improve the
accuracy of the image face ellipse detection.
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